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SUMMARY

1. Background

In early 1974, after some preliminary investigative work by IRO,
study was assigned to that same office by the AMC (now DARCOM) Divrectorate
of Supply, to formulate and test methodologies with potential for improving
demand forecasts for Army managed secondary items. Moving average and
exponential smoothing forecasting schemes had been investigated extensively
in the past and have specific data retention rules. Other movre structured
forecasting models had not been tested; the catalog approach for other than
insurance items, Bayesian estimators which combine item history and demand
distributions over a whole catalog of items, and techniques (e.g. Kalman
filters) which handle changing demand rates should be added to a list of
potential techniques.

At the time, Martin Cohen was studying techniques for forecasting that
utilized program data (flying hours, end item densities). The study re-
ported here did not duplicate the effort with those techniques, but it was
found that the procedures (algorithms) developed herein could be applied

to demands or to demand per unit program rates.

2, Purpose & Objectives

R Investigate untried but theoretically rigorous forecast techniques
including methods applicable to items for which a program factor

is not feasible.

P2 Develop implementation procedures and specifications for the

retention and upkeep of item past history.

01 Use the available 28 quarters of AVSCOM demand and program data

for forecast model building and comparative evaluation.

02 Determine how much item history should be retained, how often
should :zhe retained data be updated, and what importance or weight
should be attached to various demand estimators (e.g. how the age

of the data should be weighted).

03 Determine the merit of various performance measures for comparing

forecast techniques. 4
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3. Scope

The study is limited to developing procedures for the forecasting of
world-wide recurring demands for Army managed C}ass IX secondary 1items
(repair parts and spares) including Stock Fund and PEMA items. The pro-
cedures are to be applied in the Commodity Command Standard System (CCSS)
inventory management function implemented at the Army's National Inventory
Control Points (NICP).

The focus of this report in terms of a "best" forecast technique is
on an algorithm which uses an ancillary variable (FH program or density
program). A further study and subsequent report will concentrate on the
techniques described herein which may be applied to items for which prograa
data is not meaningful, and on the results utilizing a data base of such
items.

This current study was not intentionally limited to aircraft items but
the only adequate program data available over 7 years was for such items.
Methodology is developed which extends the scope to items from other Cormands

for which end item density 1s the ancillary variable.

4. Methodology

a. Posgtulate unodels of the demand process.

b. Develop algorithms which theoretically would best forecast this
process. At this point 18 also determined the time series on which to apply

the algorithms - demand D, demand per ﬁlying hour D/H, logarithm of demand
log D, logarithm of demand per flying hour log D/H.

c. Determine algorithm parameter values for various stratifications
of items, e.g. classify items by annual requisition frequency.

c. Screen the many algorithms by their performance with several
statistical error measures (e.g. mean square error by item class).

d. Evaluate the remaining candidate algorithms by their cost-performance
averaged over individual items in the simulation model of the Army supply
management system.

The final selection was made on the basis of smallest aggregate simulated

inventory cost for constant time-weighted requisitions backordered.

5
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5. Results

a. "Best'" algorithm: Kalman filter (see Section 5.3) to estimate
demand per unit program (DP).

(1) It is akin to exponential smoothing with a varying smoothing
or weighting parameter which depends upon the program in a period (quarter)
and a "k-factor".

(2) The "k-factor" is updated yearly from the items demand
frequency class.

(3) Older data is given less weight.

(4) Periods with high program given more weight.

(5) Forecast = DP x program in future period.

b. Cost-Performance Comparison: "Best" versus Present Army Program
Factor (1794), based on simulation projections for 10,000 items.

(1) For same average days wait, $1,800,000 annual savings are

realized.

(2) At constant average yearly cost, wait is reduced ~s12%.

c. Tables of parameters are preseuted for forecasting by item classg,
as are extensive tables of error measure values by item class for the
various algorithms.

d. Several candidates (non-program related) algorithms for forecasting

common items have been founc.
6. Cnnclusions

a. This study has reinforced Cohen's findings - that forecast
algorithms utilizing flying hours perform becter on the AVSCOM data base
than strictly demand dependent algorithms.

b. Recommended technique yields substantial improvement in terms of
cost savings.

c. The technique can be applied across Commodity Commands with only

a change in algorithm parameter values.




d. Methodology has been developad which can be applicd to a broad

spectrum of common items.
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CHAPTER I
INTRODUCTION

In many approaches to demand forecasring, several general forecast
techniques (moving averages; single and double exponential smo.thing;
linear regressions on time or another independent vaiiable) are applied
to groups of items. Average performances with respect to an error measure(s)
are compared; optimal forecast parameters (smoothing parameters, moving
average base) need to be determined by searck or enumeration, observing the
error measure values. Such approaches are somewhat liaphazard; the fore-
cast parameters would be justified a posteriori, no consistent theory on
the structurc of the underlying processes would have been developed, and
exteusions of empirical results and the techniques would be made more diffi-
(e

In this study, several models of a demand process or a demand - flying
hour (FH) process are postulated. Basically the models consider a process
mean corrupted by some noise in the observed values; in addition the mean
itself of the process is changing randomly and/or non-randomly. For the
most part, nothing is assumed about the probability distributions of the
random variates. Models for how the demand series over time Dt is changing
and for how the demand per FH series Dt/Ht is changing are described. For
example one might expect that i1f a demand ~ FH relation exists, the mean of
the rate D/H would be relatively stable.

The advantage of this modeling is that available and newly developed
¢3) theory dictates what are the optimal and suboptimal forecast algorithms
associated with each model. For example, since in general the models assume
the process mean to be changing, a sample mean of all past history is not
the best forecast technique. Kalman filters (akin tc exponential smoothing
with changing smcothing constants) and moving averages with variable base
lengths are indicated. Also parameters of the forecast algorithm are re-~
lated to noise variances in the process. Analysis of the time series of

the process for groups of items can determine these process noise parameters

i P b e o 8




on an average basis. If patterns in these average values develop over
groups of items, this is one indication that the model in question is
appropriate. Finally, these process parameters lead to the forecast
parameters without the need of a search; and the performance of the al-
gorithm relative to others indicuates which model best describes the process.

Before proceeding with models of the processes and associats«:d fore-
cast algorithms (Chapter II), we briefly describe in Chapter I{ the data
base of items used in the analysis. Chapter IV describes the computer
program for evaluating the fovecasts via statistical error measures.
Stratified empirical results comparing about 25 algorithms are presented,
as are 10 average values of an important forecasting parameter - the k
factor - for items grouped by requisition frequency. Trends and relative
values in the tables are analyzed. In Chapter V, the most promising can-
dldate algorithms are used as forecast routines in the simulator of the
Army wholesale supply operation. Based on cost performance in the simula-
tor runs, three final algorithms for forecasting using FH are compared to
the current AVSCOM program factor technique. Projected savings are dis-
cussed in Chapter VI, as are implementation considerations and modificatioms
of the best algorithm to utilize end item density as the program factor
rather than a usage variable (FH).

A short chapter on conclusions, recommendations for forecasting and
further work on common items, and some caveats or aids to future re-

searchers ends this report.
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CHAPTER II
DATA BASE

The conclusions in this report are based on studies made using
chronological demand data from AVSCOM. Flying hours were obtained from
DCSLOG. Details of the data organization and editing are found in an
IR0 report by Cohen (4). The final data base contained over 10,000
"peculiar” parts - those that are on only one type of aircraft and hence
can be associated with specific flying hour values. A larger data base
of cormmon items ( ~ 30000) has peen retained to study forecast algorithms
developed here which do not depend on usage (FH); this will be a future
task (see Chapter VII).

All data has been summarized by quarter. For each quarter we have
worldwide totals of the number of requisitions {Rtl » the quantity de-
manded {rt} » and the flying hours th}. The flying hour totals are
broken out by aircraft type/model/series (TMS). The data spans the 28
quarters from Jan 1967 thru Dec 1973. The scope of this work is limited
to recurring demand; requisitions for initial issue, mobilization, and
rebuild are not included.

Table 2.1 shows the distribution of {items in the final data base by

classes (definitions follow).

TABLE 2.1 DISTRIBUTION BY ITEM CHARACTERISTICS

ITEM CLASS TOTAL COUNT PEMA ASF NON-REP REP INS
LDV Non-Dynamics 10350 29 10321 9877 448 25
LDV Dynamic 1008 24 984 957 51
LDV Total 11358 53 11305 10834 499 25
HDV Non-Dynamic 174 30 144 66 108
HDV Dynamic 99 52 47 26 73
HDV Total 273 82 191 92 181
Total Non-Dynamics 10524 59 10465 9943 556 25
Total Dynamic 1107 76 1031 983 124
Total 11631 135 11496 10926 680 25

10
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The last columns give breakouts by funding (PEMA, ASF) and segment
(non-reparable, reparable or insurance items). Usually PEMA are expensive,
reparable items, HDV items have in at least one year an average yearly
doliar demand of at least $50,000 or average yearly frequency (requisitions)
of at least 100; the LDV clase is comprised of the other items (low and
medium dollar value). Dynamic components are defined based on a descrip-
tion of the items FSC, and are those experiencing high rotation rates
(rotor blades, transmissions, engine components) - the demand for which
may be quite dependent on FH., Non-dynamic components are more structural
in nature. The LDV non-dynamic class is intended to contain relatively
cheap non-reparables.

Again refer to Cohen (4) for a fuller description.

L
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CHAPTER III

MODELS OF PROCESSES AND FORECAST ALGORITHMS

3.1 Models of Processes

3.1.1 Structural Forms of Underlying Processes

Dynamic Mean

yt - xt +')(t

+ v (31)

E(?t) - E(vt) =0
Vnr'?t =r
Var vt = q

A observed value of process at time (qtr) t
x_ = mean of process at time t

7t = additive noise random variable with variance rt2

v . = additive random change in mean x from time t-1 to time t.
Variance is qt2

This model is sufficiently complex to explain short term trends in
a time series. I1ts mean is non-stationary in that it changes from period
to period. Moving averages and single exponential smoothing work well on

this process.
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Linear Growth

t

Other de

%
=% T

x._*8, * v, (311)

= Ber Y&,

2
t

) Var St = p

= incremental growth in mean of process at time t
= random change in growth term

finitions as above.

This model allows for linear growth over time of the process mean.

Its forecast algorithm is a general version of double exponential smoothing.

Linear regress

ion over time would do well.

Dynamic Proportion

Ze

Ep,)
Var L

Var w

= ut‘ Ot ’ pt 20
UL W s W, >0 (3114)
= E(wt) =1

= exp (rtz) -1

= exp (qtz) -1

= observed value of process at time t

= mean of process at time t

= multiplicative noise random variable

= pultiplicative random change or "percentage' change in

mean u from t-1 to t.
13
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This model is useful for avoiding theoretically possibie negative
values as in (3i). Random changes can be regarded as percentages. With

the variances expressed as in (31ii1) we may make the transformationsll
2
x, = log(u) - 1/2r

(31v)
Y, = log (zt)

and thereby use system (31ii) with

2

o - b -
8t 1/2 q, , Var 6c o

3.1.2 Processes Utilized in Structural Forms

The time series {Dt/H[X and {Dt} are natural candidates for
investigation in the three structural forms. The former will yield fore-
cast algorithms for a demand per FH rate which in turn can be used to
predict future demand based on projected FH. Algorithms for the latter
process will also be developed here and for comparison purposes be appliec
to the current peculiar item data base, but their real potential will.ge
recalized when forecasting common items or where the use of a program (FH;

factor is not feasible.

]
(=4
/r

In (31) let x, E(Dt)‘ then Ye

In (31) let x E(Dt/Ht) then Te = D _/H

€

In (3141) 1let &, = E(Dc) then ¥ " log Dt

In (31ii) 1let u

A E(Dt/Ht) then y, - log (Dt/ut)

It is now apparent that past history of four time series iDcl, {Dt/th,
{log Dt}, ilog Dc/Htk may be used in algorithms to forecast their upcoming

values. Appropriate transformations will then yield forecasts for demand.

1See Reference [3]. u,pf,ware assumed log-normally distributed.

14
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There are many combinations as we shall see and the investigation becomes

quite comprehensive.

3.2 Forecast Algorithm:

The following sections describe each algorithm tested, relating it
to a model. As applied to the four time series in Section 3.1.2, the
algorithms forecast a value y over a given lead time where y represents
D, D/H, log D, log D/H. Initialization procedures are described in
Chapter IV. The theory for the development of these procedures is given
in Orr [/3].

Each section has designated abbreviations for referring to tabulated
results in Chapter IV. The underlying model is also noted.

For each of the three model structures in Section 3.1, there is an
optimal algorithm, which minimizes mean square error of forecast of a
future period. These algorithms are Kalman filters and are designated
as such in the follcwing sub-sections. Sub-optimal* algorithms are
also described; exponential smoothing is seen to be a special case of
Kalman filtering; moving average algorithms are in a separate class but
are particularly suited for dynamic mean models, with the base period
parameter related to the Kalman filter parameters.

3.2.1 Kalman Filter - 1lst Order

(1) Designator ~ KAL-1l Model - Dynamic Mean

yn(z) =X (1)

xn S N Gﬁ(yn - xn-l) (2)
q c * e - G

G e D n n

nt+l 2 2 Y
9 # Ta Gn 3 rn+1 (3)

where

s = observed value in period (QTR) n

*
In our context, sub-optimal refers to methods which also can "fit" the
model generated data and use the process parameters.

15
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x, = estimate of mean of process at end of pericd n

yn(i) = forecast at end of period n of the process value £
periods4later \ !
3

Gn = variable weight, ''smoothing parameter"
2
qQ ., r : as defined in (31)

(11) Exponential Smoothing
Designator - EXPSM - a sub-optimal algorithm for

Dynamic Mean

Let Gn be a constant G. Then (2) is exponential

smoothing relation.
It is seen in Section (3.3) that an appropriate G

for a corresponding moving average of base B is

Vitde -1
2c . (4)

G
with ¢ = (282 - 1)/6 (s)

(114) Moving Averages with Fixed or Variable Base Lengths B
Designator - MA4, MA8, MAl2 Model - Dynamic Mean

(Denotes f Qtrs)

y (D) = x, (6)

B = 4,8, or 12 (7)

E B
n
W=

B
LA AT

i=1
Designator - MAKB

as in (6) and (7) with

B = J(1+6k) /2 (8)

where k is forecast parameter discussed in Section 3.3.
With this B, a moving average is suboptimal.
16




3.2.2 Modified KAL-1 Based on Cohen's Results

(1) Designator - KALi:ﬂ? Model - Dynamic Mean for
y = D/H

In Cohen's investigation {4], the best algorithm tested
was basically REG8 described below. We can postulate a model for which
this REG8 is a suboptimal algorithm.

De =3 He *7¢ )

at - at-l - Vt (10)

Dividing (9') by Ht we obtain
Dt/Ht -a +7, (9)

where equationg(9) and (10) are in Dynamic Mean form (31i) and where
2 ’
» -
Var % = 1/H " Var 7, (11)

We assume a constant k (see Section 3.3.1) defined by

Var 7:

2, 2, 1
Varw, " Tc /% TR -

Assuming Var}{ not dependent on Ht (homoscedasticity),

2 2 2 2
T, Ht = constant L) Ht+l (13)

Therefore equation (3) becomes (using subscript n now to denote algorithm

iterations)

1+kG
3 2 2 (14)
1 +k Gn + k Hn /Hn+l

17
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and as before in Section 3.2.1
Yo (0 = x (15)

*n T *p-1 * Gn.(yn - xn—l) {id)

Note that, as with exponential smoothing, (16) gives less and less
weight to older quarters. On the other hand (14) indicates that quarters
with relatively high FH are given more weight; if Hn+ >> Hn then

1

C + 1 and xn+

o+l 1" T

(11) Regression Technique from Cohen [4]
Designator -~ REGS Model - Dynamic Mean (9),(10)

Use only with y = D/H

Y (0 = x 17)
X = 39 (18)

n I “n=j11 n=-3n

J=1
where weight oy is given,
8
2 2

“n-j3 Hn-j /iflun-i t1 el

Designator - REGKB

Use B given by (8) in place of 8 Qtrs

Equation (18) is in the form of a weighted moving average. Cohen's
algorithm written in this way demonstrates its appropriateness for forecast
wodel (9),(10). According to theory, the weights should be inversely
proportional to the variance of the process variables Yy when forming
minimum variance estimators of the type (18). REGKB is an obvious

modification, to allow the base to vary.
18




3.2.3 Kalman Filter - 2nd Order

Designator - KAL 2 - GEN Model - Linear CGrowth
y (D = x_ + 16_ (20)
;n - ;n-l * gn-l * Gn °(yn - §n-l(1)) (21)
By = By *H - G -y (1) (22)

Gn changes as in (3)

s X - B l-. _‘i
H % V{I-Gn)/(loo rn/qn ) (23)

Hn is an approximation assuming pn2 in system (311) is

small,
(21) and (22) are again the basic filter where variable weights Gn’ Hn
are applied to the one-step-ahead error to obtain adjustments to the

previous estimates of the process level and growth means, x and 3

3.2.4 Modified KAL 2 for Log Series

Designator - KAL 2 - BQ Model - Dynamic Proportion

Use (20), (21), (22), (23) with

Hn = 0o (24)

B, = -2’ (25)

This algorithm is used with log D or log D/H series of values, by
which (3111) is transfermed to (31i) thru (3iv).

3.3 k-Factors
An important parameter of both the models and the algorithm is the

k-factor.

g = Variance of noise in process
Variance of random change in process mean

2, 2 .
r “/a, 19 o))




. qn2 is associated with short term correlations in changes in the mean.
k is assumed constant in all of the models.

1f in addition rnz does not vary by period, i.e.
r = r (27)

then (3) becomes

1+k G_
ntl 1+ (G_+ Dk (28)

G

V1 + 4k -1

Gn in (28) approaches a limit G = 7k

Orr [/3) shows that given a dynamic mean model with parameter k, the "best'
(in the sense of minimizing mean square error of L-pariod ahead forecasts)
moving average algorithm should use B periods (quarters) as its base with

B given by (8).

k is an indicator of how stationary the process is; high k values
imply relatively small changes in the process mean and more reliance
should be put on past history for forecasting; low k indicates changes -
in the mean, short term trends, and relatively low observation noise,
and more weight should be put on recent observations (note (28)).

There are several ways of obtaining estimates of k. Orr [s3]
obtains formulas for k using mean square errors of moving average forecasts.
Average values of k for items falling in cells of various stratifications
were obtained in this study. A stratification by yearly requisitions
showed the most definite patterns and the average values of k are tabulated
in Chapter IV for the four time series. These tabulated results are used
to update k every year in the above algorithm in cases where an item
migrates from one requisition class to another. In a sense the algorithms
have now become dependent on a catalog parameter (average k) derived
for groups of items which is updated yearly.

k is quite valuable in determining the parameters for suboptimal
algorithms. If one 18 constrained to use a MA or exponential smoothing
algorithm rather than a Kalman filler, equations (4), (5), and (8) give
all the necessary relations among G, B, k and are a rigorous alternative
to Brown's (3] G ~ .

B+l 20
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CHAPTER IV

ERROR ANALYSIS

4.1 Computer Program to Cather Error Statistics

The program, though long, is conceptually quite simple. Only the
forecasting subroutine is changed in a given run. Different error
measures (Section 4.2) are averaged over a time horizon by item and stored
on a tape by item for subsequent stratifv:ng procedures. A preliminary

output gives the error measures averaged over items in two strats:
AYD x UP 5 0 - $5000, $5000 - 50000, $50,000 & up
AYF (req) : 0 -3, 4-12, 13 & up

Significant Logic:

1. 735 items deleted for zero FH in last quarter.

2. 9 itemsdeleted with an absolute error larger than 2000
in any quarter, using moving average of 8 quarters.

3. Estimates of AYD, AYF are averages over the time horizon
of the B8 quarter moving averages.

4. Time horizon goes from quarter ID to qtr 28 where ID is
the first ncn-zero FH qtr for the item.

5, Forecasts start in 8th qtr after ID (i.e. 2 year warmup)

6. Error statistics accumulate in 12th qtr after ID.

4.2 Error Measures for One Item

Described in the following subsections are all the error statistics

accumulated on demand forecast error. Note
N
D?(I) = forecast at quarter T of demand in quarter T+ 4
So if process forecast §T(E) is for the observed variable D/H then ﬁr(!) =

~ 2
yT(X) « Heog ,i 18 the projected” FH in period T+ X

These measures are averaged over items in particular etratification

where H
o

schenes.

2Study used actual FH for "future" periods, but these did not differ sig-
nificantly from projections, which are really target programs.
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Mean Absolute Deviation

This error measure and the following are computed for one quarter

MAD,, and four quarters MAD. All un-subscripted measures refer to yearly

values.
L TH .
MAD, = Tz‘ [Dp4q = Do) (1)
L T4 -
MAD =+ | Z(p ., - D)) (2)
v =]

Mean Square Error

MSE replace |+ | by (-)2 in (1)

1 M
MSE : replace| . |by (-)2 in (2)
Error Bias

Ertor1 : replace l-’ by (+) in (1)

Error : replace ": by (+) in (2)

Absolute Error Over Forecast F

|51!/F1 : replace || by ['l/ﬁr(l) in (1)

4
,'E;/F : replace | l by Y Zl’)\?(i) in (2)
L=

Absolute Error Over Actual Demand A

]ClllAl : replace | *| by I'I/ﬁr+1 in (1)

4
[€l/a : replace|:|by!-|/ Z D in (2)
L2 Tk

Absolute Error Over Average of Demand and Forecast

1,1 12 (A+F)
obvious

1€17 172 (a+F)
22
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Relative MAD

MAD/AYD

Relative MSE

MSE/(AYD)2

In the final tabulation of the algorithms, we looked at error
measures of one year forecasts since this corresponds to representative
lead times. .:'/F and |€[/A have built-in disadvantages when F or A
equal 0 or F,A are large. MSE is more sensitive to large error than MAD.

Final four measures selected are:
MAD, MAD/AYD, MSE/(AYD)Z, |€{/1/2(A+F)

The lest three are relative measures, necessary when combining items with
different demands. The MAD is useful for low demand items.
Before presenting the tabulated results (Section 4.5), tabulated

values on the k-factor are presented.

4.3 k~factor Tables

Methodology is presented in Orr ¢3). For log D and log D/H, both k
and q are obtained since § = -1/2 q2 is needed (equation (25) Chapter III).

Stratifications using the following variables were investigated -

requisitions per year req
average yearly demand AYD

1/ Unit Price 1/up
dollar demand AYD - UP
average order size AYD/req

req and AYD - UP give similar patterns by strat cell which are explainable.
Other stratifications did not yield strong patterns. Table 4.1 gives the
k-values by itemx requisition for the four processes, D, log D, D/H,

log D/H.
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TABLE 4.1 k-FACTORS BY REQUISITION CLASS

D | log D o/t | log D/H
Cell Upper # Avg | k MA % q k MA k MA | 9 k MA
Bound Items Reg | Qtrs, Qtrs Qtrs Qtrs
L 1 1489 559 0 1¢.16 3.69 3 i 0 1{.34 14.56 6
2 2 1354 1.52 3.164 3 ‘.20 6.77 4 i 7.34 5 1:38 3L.58 8
3 3 1176 2.50 | 4.251 4 ;.22 8.12 5 114.18 7 {.36 48.13 9
4 4 873 3.49 ! 4.399 4 i.26 8.18 5 %20.79 8 |-38 52.71 9
5 5 636 4.49 ‘ 4.7 4 (.26 9.75 5 ;31.19 10 {.38 54.71 10
6 6 513 5.51 | 3.464 3 .30 7.67 4 !28.31 10 |.46 54.7 10'
7 8 768 6.95 | 3.864 3 }.34 6.87 4 !75.9 15 |.40 54.7 10
8 12 943 9.74 | 3.674 3 1.36 7.23 4 : L °o 1,42 50.16 10
9 18 747 14.68 | 3.120 3 .42 5.43 3 ! oo o 3.38 58.88 10
10 b 1204 35.99 | 2,022 3 [.44 3.96 3 l L < 1,36 77.0 32
For D, D/H: MA Qtrs found from B = JEZ%ET

For log D, log D/H:

MA Qtrs found by search to minimize (A.7)

v error in forecasting process value

4.0
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Analysis

Remember rz is process variance around a mean and q2 is associated
with short term correlation in changes in the process mean. High k
reflects stationary processes; low k is associated with short term trends.

k values for D/H and log D/H processes increase with increasing
activity (req). This 1is because demand becomes more correlated with FH
as activity rises. The nean of the D/H rate becomes more stationary
(higher k). Also the k values are higher than those for the corresponding
D and log D series since these processesn are more volatile and reflect
trends in FH.

Note that for D and log D series that k increases, then decreases
with req. For low # of requisitions, q2 is high (relative to r2) in-
dicating that demands tend to come in correlated "bunches". For high
requisition activity, these demand series show trends due to changes in
FH. Hence k is somewhat lower at top and bottom of these columns than
in the middle.

The behavior of q under log transformations (see columns) is not

fully understood. v

4.4 Forecast Algorithms - Initialization and k-Updating in Computer
Program

Equations for KAL-1 in (2) and (3) Chapter III are started up usi;g

X = M+ G (y ) (3)
r2
R “
where
y = initial observed value of process

/' = mean of a prior distribution on X

~
0

variance of a prior distribution on X

r = variance of estimate Yo

25
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In lieu of a catalog approach, using statistics on groups of items
to get /\;rzlwhich was not used (see Chapter VII), the 8 qtr warnup
period was used. M was obtained from an 8 qtr average and Yo from the
last 4 qtrs. Assuming some constant process varianceh? in warmup,T =C

2 2
Da i Fo€ hz/&. Therefore G, was assigned a weight of 1/3.

For KAL-2 , /3 = 0

For moving average algorithms, the initial Qo is obtained from the
previous B quarters.

Every 4 qtrs, starting with 8th qtr, k or B is updated by a table
lookup for the appropriate process based on the current 8 qtr moving

average estimate of the yearly requisitions.

4.5 Tabulated Results on Error Measures

The following 16 tables present the average values of the four error
measures - MAD/AYD, MSE/(AYD)‘, MAD, [€]/1/2 (A+F) - for forecast techniques
applied to the four time series, {D}, {D/H}, {log Di, {log D/H}. The
results were obtained using the same stratification (on average requisitions
which gave the final k-values. This natural consistency in performing
stratifications allows one to observe how error measure values vary as
k-factors change, and indicates how implemented forecast procedures which
may vary by requisition class would perform.

Refer to Section 3.2 for a description of the designators. Not all
designators - time series - error measure combinations are included.

Some forecast techniques Qere elirminated due to preliminary runs with un-
promising results; as the experimental design evolved some branches of

the combinatorial tree were not climbed to a great extent; not all of the
modified algorithms based on Cohen's results (see Section 3.2.2) were runm,

since all of these are tested in the simulator.
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e O Sy Sk ] [ ] oy o ) e e R co Mo oo v == rool barmoe -
1 ! 4
2 1354 | 1.52 1337 L4 1.622 | 1.608 ! 1.375
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